CSIR - Central Road Research Institute

Technical Lecture 3

Full Depth Reclamation (FDR) Using Portland Cement

U.K.Guruvittal Mob & WhatsApp: 09868858380 Chief Scientist, CSIR – Central Road Research Institute New Delhi – 110025 (vittal.crri@nic.in)

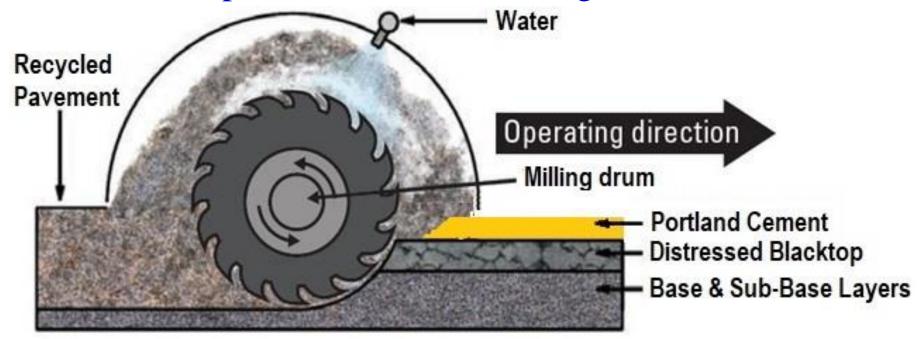
Road Pavement Distress

- ➤ Pavement Types Flexible (Granular Base or Bound Base) and Rigid
- ➤ Causes for Distress Traffic Loads, Environment, Ageing
- ➤ Pavement rehabilitation Thick structural overlay, Removal and replacement, Full depth reclamation (FDR)
- ➤ FDR Recycling distressed flexible pavement and its underlying pavement layer(s) into a new base layer
- ➤ Advantages Sustainable technology, low cost alternative, thinner surface course, moisture resistant, higher strength of new pavement which provides stronger, consistent base

Full Depth Recycling (FDR)

- ➤ Process Excavating and pulversing in-situ pavement, blending with a binder (Portland cement), water, corrective or additional aggregates (if needed) as per mix design, compaction followed by curing to produce a bound base, laying surface courses (Subgrade inclusion?)
- > FDR using OPC saves 30 to 60 per cent in costs (PCA)

Soil Stabilisation Using Cement & FDR


- ➤ Both have similar methodologies, Creating bound pavement layer using an additive to increase the strength
- ➤ However, soil is a natural material, pavement is man made, differences in gradation, compaction and strength

Road Reclaimer

➤ Road Reclaimer or Road Recycler – Machine for excavation, pulverisation and mixing stabiliser and water

Schematic View of FDR Process

- > 'Recycling' and 'Reclamation' usage as synonyms
- ➤ Suitable Road Reclaimer machine Must for FDR

Limitations of FDR

- ➤ Not for improving roads which fail due to poor drainage Saturated subgrade or inadequate pavement drainage
- ➤ Not if ground water table within 0.6 m from subgrade top, Not for cement concrete pavement
- ➤ Not when failure is due to poor quality subgrade soil
- ➤ Before taking up FDR, 'Drainage and Poor subgrade condition' if encountered, must be treated appropriately
- Crack relief layer required above FDR layer
- > Traffic not to be allowed over FDR layer during curing
- > Impact of FDR layer on pavement drainage.....?

Rural Roads Suitable for FDR

- ➤ Upgradation projects under PMGSY III —After completing 10 years of design life
- ➤ When existing pavement has more than 50% area distressed Deep rutting, Shoving, Slippage, Extensive potholes and patching, Excessive cracks (Longitudinal, Transverse, Alligator) Worn out pavement, Ravelling, Base or sub-base failure
- ➤ Road pavement made of low grade materials Brickbats, Soft aggregates, Gravel, etc., which need to be replaced
- ➤ Pavement Condition Survey to identify principal modes of distress, Ground water table depth,
- ➤ Identify road sections having distress due to poor subgrade or inadequate drainage for separate treatment

Distresses Which Can be Rectified

Extensively Worn out Pavement

Rutting

Potholes and Cracking

Raveling

Material Testing – Subgrade & Reclaimed Pavement

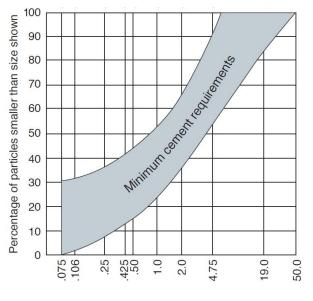
- ➤ Subgrade Index Properties and CBR
- ➤ Reclaimed Pavement Particle size analysis, Liquid limit and Plastic limit, Heavy Compaction test

 Replacing
- ➤ Cube compressive strength test (IS 516)
 - ➤ 15 cm cube moulds, Needle Plate Compactor use
- ➤ Durability Test as per IRC SP:89
- ➤ Tests on Cement and Water (IS 456) Potable water

aggregates more than 38 mm size by equal weight of particles between 4.75 to 37.5 mm

Mix Design for FDR Process

- ➤ Determining suitable percentage of cement and water to be admixed before compaction Mix design
- > Sample LL to be less than 45%, PI to be less than 20
- ➤ Pulversied pavement sample to meet gradation limits or adopt mechanical stabilisation
- ➤ At different cement contents Modified Proctor test and cube compressive strength test (7 days curing)
- ➤ Using graph decide cement content required for 4.5 MPa compressive strength
- > Additional cube specimens for durability test


Gradation of Pulverised Pavement

Changes required for cement stabilised material gradation

	U.K.Guruvitta
IS Sieve	% passing
53 mm	100
37.5 mm	95 – 100
19 mm	45 0 190
9.5 mm	35 – 100
4.75 mm	25 – 100
600 misrón	8 - 65
300 micron	5 – 40
75 micron	0 - 10

Gradation Limits for Cement Stabilisation

Particle Size

PCA, Cement Treated Base, 2006

Proposed Gradation

IS Sieve	% passing (Max)
75 mm	100
53 mm	65 – 100
4.75 mm	55 – 85
75 micron	0 - 20

Optimum Cement Content

Should meet both compressive strength and durability test criteria

MORD Specifications for Rural Roads

CSIRCरर

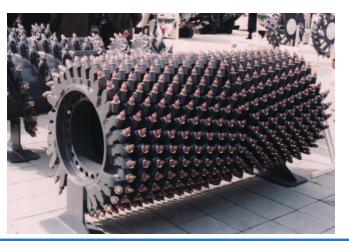
Pavement Design

- ➤ Pavement design to be as per IRC SP:72 Cement treated bases & sub-bases, thinner pavement due to high modulus
- ➤ Design traffic above 0.3MSA Crack relief layer required
- ➤ Aggregate crack relief layer (Modified gradation of WMM) or Stress Absorbing Membrane Interlayer (SAMI)
- ➤ Pavement drainage Permeable Crack Relief Layer
- Aggregate crack relief layer in view of Cost consideration and Thinner bituminous wearing course of rural roads
- > FDR to be used as bound base for flexible pavement

Construction & Specifications

- ➤ FDR work Machinery intensive operation, similar to cement stabilisation
- ➤ In-situ operations Excavate and pulverise existing pavement, Mix it with cement and water, Compact it
- ➤ Equipment Road Reclaimer (Recycler), Water tanker, Motor grader, Various types of road rollers, Dumpers, Loaders, Machineries for WMM and bituminous mix preparation and laying
- ➤ Manual spreading of cement for FDR in Rural roads
- ➤ Simultaneously during excavation and pulverisation, water is mixed, Water tanker to be tagged with reclaimer

Construction & Specifications..contd



> Spotting bags, opening and spreading cement

U.K.Guruvittal

➤ Must equipment for FDR – Road Reclaimer (Recycler)

Cutting Drum of Road Reclaimer

Road Reclaimers

Roadtec

Caterpillar

Sakai

Construction & Specifications..contd

- ➤ Output— 500 cubic m per day (Single lane, 0.3 m thick FDR layer 450 m length)
- ➤ Reclaimers can be operated in single pass Excavation, pulverisation and stabiliser additive mixing in one pass
- > Reclaimers can be used for Two Pass operations also
- > Drum rotates backwards when machine moves forward
- ➤ Pulverisation depends on speed of reclaimer, drum rotation speed, door opening size for the drum, breaker bar setting, pavement composition and its condition, etc
- ➤ FDR layer to be compacted in one lift, hence high thickness of compacted FDR layer

Construction & Specifications..contd

- ➤ Different types of Rollers Tamping foot / vibratory foot roller for break down rolling, Smooth wheeled single drum vibratory roller or pneumatic roller for intermediate rolling, Tandem roller for finishing rolling
- ➤ Roller passes to have 50% overlap
- ➤ Grader Camber for material laid for compaction, aeration
- ➤ Compaction to be completed within TWO hours after mixing water and cement
- ➤ Utilities to be identified & protected Manual operations
- > Curing for 7 days by sprinkling water over hessian/ straw
- > Trial stretch (min 50 m) construction to finalise operations

>

FDR Process for Rural Roads

Andhra Pradesh Maharashtra Tripura Kerala

CSIR (ररा

Quality Control

Before Construction - During DPR Preparation

- Existing Pavement Subgrade, and other pavement layers
 - ➢ Gradation, Plasticity, in-situ density and in-situ moisture content
 −3 Samples per km
 - ➤ CBR at in-situ density One set of tests (3 moulds) for each type of soil
 - ➤ Pavement layers One sample per km for gradation and plasticity
- ➤ Mix design to be adopted for FDR
- ➤ Cement type to be reported, Same type of cement to be for both laboratory tests and field application
- Cement (One set of tests for each lot) water (One set of tests) and additives if any (Before taking up works)

Quality Control

During Construction

- > Pulverisation of pavement layers
- > Placement Moisture content
- > Quantity of cement spread on pavement
- Uniformity of cement Mixing
- ➤ Layer thickness after compaction
- ➤ In-situ compacted density
- ➤ Compressive strength of cement admixed mix Cube moulds
- Compressive Strength of field compacted FDR layer after7 days (By taking cores)

Cores Extracted from FDR Layer

Full Depth Cores – Extracted After 28 Days

Broken Core
Extracted After
7 Days Curing

Listen to your heart, Not to the Crowd Thank you

U.K.Guruvittal

Chief Scientist, CSIR – Central Road Research Institute (vittal.crri@nic.in)