New Technology Initiatives in Rural Roads and Use of Marginal Materials

Utilization of waste plastic in Low volume Roads

National Rural Infrastructure Development Agency

Ministry of Rural Development

National Institute of Technology

Warangal, Hyderabad

Lecture 3

Utilization of waste plastic in Low volume Roads

Typical bituminous pavement composition

High Volume flexible road cross section

Low Volume flexible road cross section

Major distresses found in Bituminous pavements

Rutting

Cracking

What distress are the mixes expected to withstand?

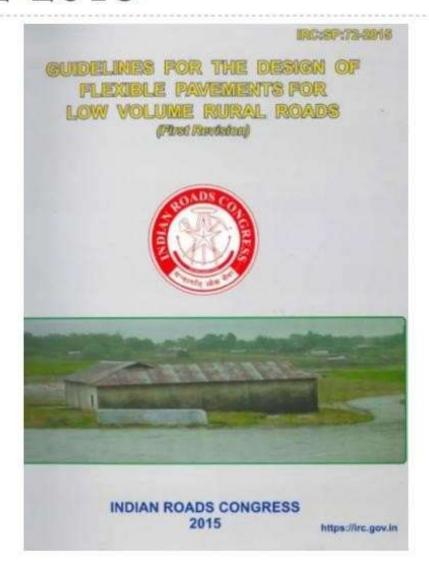
- Bituminous mixes should be designed to withstand heavy traffic loading under <u>adverse climatic conditions</u> and provide <u>adequate structural and functional character</u> to pavement
 - Rutting
 - Cracking (bottom up cracking (BUC) and Top down cracking (TDC)
 - Moisture damage
 - Low temperature cracking

Modified binders

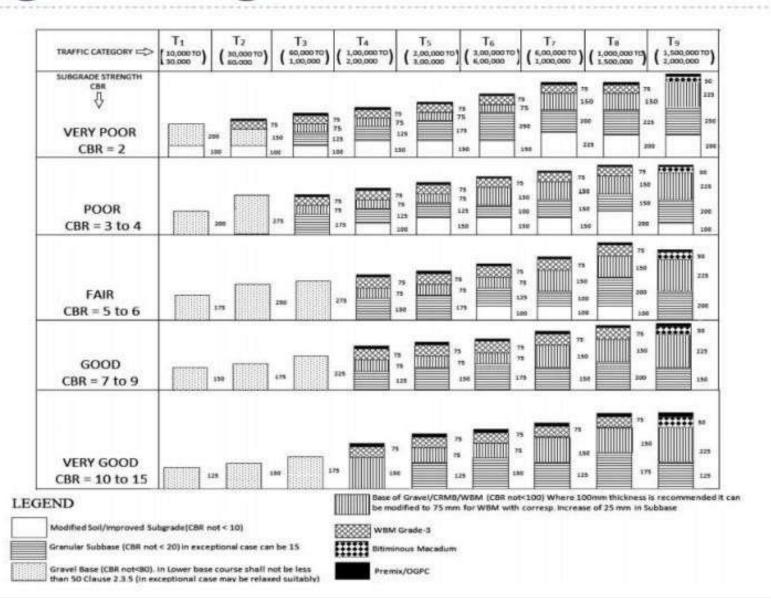
Advantages of modified binders

- Lower susceptibility to temperature variations
- Higher resistance to deformation at high pavement temperature
- Delay of cracking and reflective cracking
- Better age resistance properties
- Better adhesion between aggregates and binder
- Higher fatigue life of mixes
- Overall improved performance

Modified binders


- Modified binders is obtained with the incorporation of selected thermoplastic polymers (plastomeric or elastomeric), crumb rubber or natural rubber in bitumen
 - Compatible with bitumen
 - Resist degradation at mixing temperature
 - Capable of being processed by conventional mixing and laying machineries
 - Provide coating viscosity at application temperature
 - Maintain premium properties during storage, application and in service
 - C apable of providing homogeneous blend with bitumen

Types of Modifiers	Examples				
Plastomeric Thermoplastics	Polyethylene (PE), Ethylene Vinyl Acetate (EVA), Ethylene Butyl Acrylate (EBA), Ethylene-Methyl-Acrylate copolymers (EMA) etc.				
Elastomeric Thermoplastics	Styrene Isoprene Styrene (SIS), Styrene-Butadiene-Styrene (SBS) block copolymer, Styrene-Butadiene Rubber , and Ethylene Ter Polymer (ETP) etc.				
Synthetic Rubber Latex	Styrene Butadiene Rubber (SBR) latex and any other suitable synthetic rubber				
Natural Rubber	Latex or Rubber Powder				
Crumb Rubber or Treated Crumb Rubber	Crumb Rubber, Treated Crumb Rubber				


Bituminous surfaced roads of rural India

IRC SP 72-2015

Design Catalogue

Bituminous Mixes used in low volume rural roads in India

- Premix carpet + Seal coat surface
- Bituminous Macadam
- Bituminous concrete (BC-2) (States like Telangana PMGSY projects, Kerala RKI projects)
- Open graded gradations
- > Thin surface courses intended to waterproof the structural base course

The longevity of the bituminous mix depends on

- Placement of correct choice of the mix for the project place
- Appropriate selection of Binder type based on traffic loading and climatic consideration
- Construction efficiency

In the case of LVR, the bituminous surface which is intended to prevent the intrusion of moisture is the most costliest layer !!!

Hence it is necessary to look for alternatives which can reduce the bitumen consumption, at the same time, a technology which can improve the longevity of pavements

What are the choices available to increase the longevity and reduce cost?

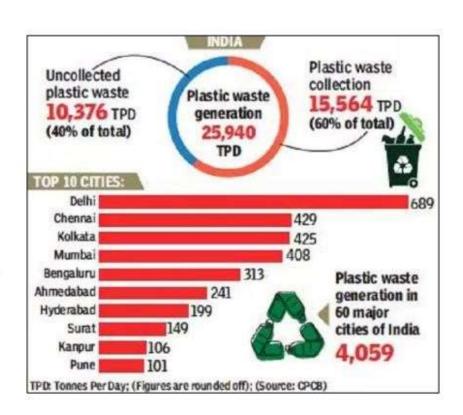
- Preferring a dense graded layer with appropriate aggregate gradation
- Using additives/modifiers which can increase the longevity of the pavement
- Looking for additives which can reduce the bitumen consumption in mixes

What are the choices available to increase the longevity and reduce cost?

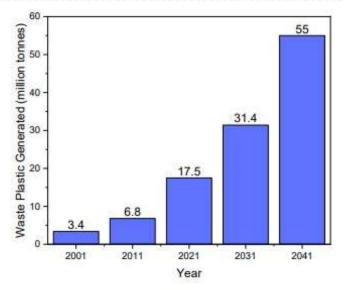
- Preferring a dense graded layer with appropriate aggregate gradation
- Using additives/modifiers which can increase the longevity of the pavement
- Looking for additives which can reduce the bitumen consumption in mixes

This is where the utilization of waste plastics in bituminous road construction comes in...

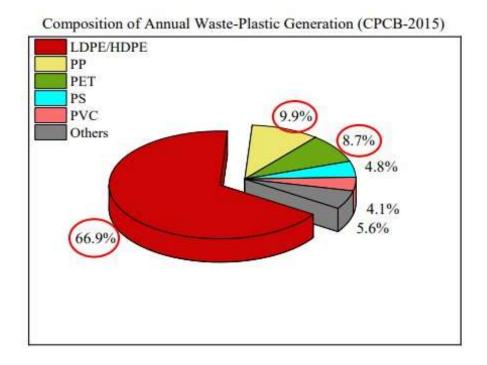
Waste plastic disposal issue



Waste plastic disposal issue


Nearly 40% of plastic waste generated in India is uncollected Article given in The Hindu (30-August-2019,PTI, India)

Out of the total waste plastics generated between 1950-2015


- Only 9% is recycled
- 79% ends up in landfills and in our water bodies

Composition of Waste Plastic generation

https://www.statista.com/statistics/1009095/india-plasticwaste-generation/

Composition of Annual Waste-Plastic Generation (CPCB-2015)

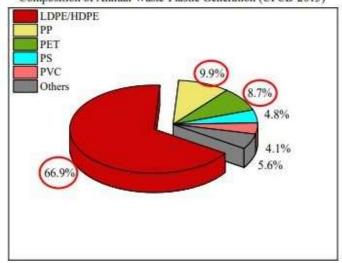


Table 1: Types of Plastics and Applications

Recycle Number	Polymer Type	Application Products				
4	PET- Polyethylene Terephthalate	Water bottles, Salad trays.				
4	HDPE- High Density Milk bottles, Shampoo bottles. Polyethylene					
4	PVC- Polyvinyl Chloride	Pipes, fittings, toys and credit card. Thermal insulation, automotive parts.				
4	LDPE- Low Density Polyethylene	Carry bags, Bin liners and Packaging films.				
4	PP- Polypropylene	Microwave trays, fibers and ropes and vehicle upholstery.				
4	PS- Polystyrene	Plastic cutlery, protective packaging material.				
	Others	Polycarbonate - Car Windows, glazing for the aircraft, Polyamides - cloths, tooth brushes.				

RPW	Recycle label	Melting point (°C)	Blending temp. (°C)
PET	1	250	- 7
HDPE	2	132	180
PVC	3	298	-
LDPE	4	110	160
PP	5	162	190
PS	6	>300	-1794 DE

Source: Dalhat et al. 2015

Suitability of waste plastic for road construction

- The bitumen is a thermoplastic materials which means bitumen becomes soft when it is heated and becomes hard when it is cooled.
- Hence, the plastic which are thermoplastic in nature are preferred.
- The following plastics can be preferred for constructing the plastic roads
 - LDPE/HDPE/PP/PET/PVC/PS/ABS
- In order to incorporate the recycled plastic, two methods have been adopting.
 - Wet Method or Bitumen Modification
 - Dry method or Aggregate Modification
- Due to high melting points of some plastics (PET), they are preferred in only dry method. Because these plastics need to be heated to high temperatures (>180°C) which results in emission of toxic compounds and at lower temperatures these are not providing good compatibility with bitumen.

Wet Method	Dry Method
LDPE	PET
HDPE	LDPE
PP	HDPE
PVA	PP
ABS	PVA
PS	ABS

IRC SP 98: 2013

- Indian Road Congress guideline IRC SP 98:2013
- Utilization of waste plastic through dry process

Table 3 Requirements for Waste Plastic Modified Dense Graded Bituminous Pavement Layers

Minimum stability (kN at 60°C)	12.0		
Minimum flow (mm)	2		
Maximum flow (mm)	4		
Marshall Quotient (kN/mm)	2.5-5		
Compaction level (Number of blows)	75 blows on each of the two faces o the specimen		
Per cent air voids	3 – 5		
Retained Stability (%)	98		
ITS (min) MPa	0.9		
VMA	16		
VFB	65-75		
Quantity of Waste Plastic % by weight of bitumen	6 to 8 depending on low rainfall or high rainfall areas		

IRC:SP:98-2013

GUIDELINES FOR
THE USE
OF
WASTE PLASTIC IN HOT
BITUMINOUS MIXES
(DRY PROCESS)
IN WEARING COURSES

Shredding of Waste plastic

Addition of waste plastic in mini HMA plants

Coated Aggregate

Plain Aggregate



An educational video for utilization of waste plastic in road construction

Aggregate dryer types

Earlier research studies (carried out in Thiagarajar college of engineering)

Description	Unit	Percentage of polymer to the weight of aggregate					
		Plain	0.5 %	1 %	2 %		
Wet weight of aggregate taken for test	Gram	1002	1004.10	1003	1007		
Dry weight of aggregate	Gram	997	999.80	999	1004		
Weight of water absorbed	Gram	5.00	4.30	4.00	3.00		
Percentage of water absorption	96	0.52	0.48	0.45	0.36		

 Marshall Stability values have also found to increase

S. No	Property	Plain	ı Aggı	regate	(%)	Agg	Polymer Coated Aggregate(Polymer is 10% of Bitumen) (%)		MORTH specification	Remarks	
1	Stripping Value	2 hrs	24 hrs	72 hrs	96 hrs	2 hrs	24 hrs	72 hrs	96 hrs	Less than 5%	As specified

File photograph of waste plastic incorporated road in Madurai

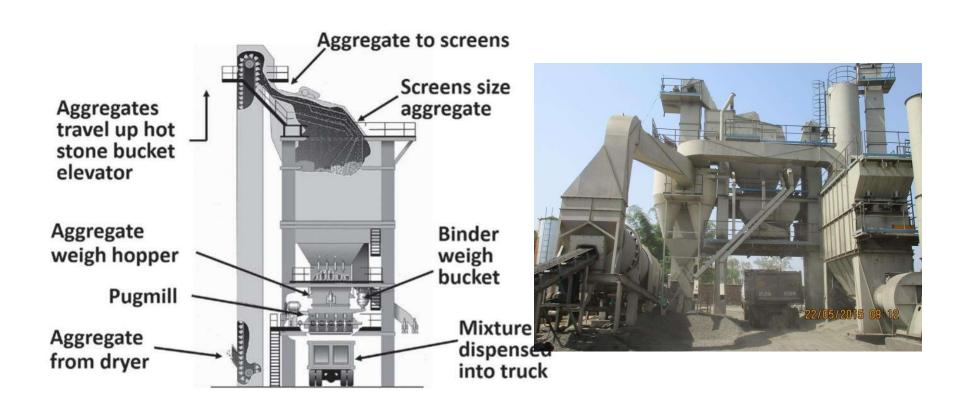
Wet Process addition

Author	year	type of plastic	Shear Rate (rpm)	Blending Time	Blending Temperature	Bitumen Type
Yousefi	2000	HDPE (1% by binder weight)	Moderate or low	1h	160	150/200
Garcia	2003	EVA/LDPE (5 and 9%)	1200	6	180	60/70
Gonzalez	2003	Recycled EVA (1 and 3%)	1800	6	180	60/70
Sinan	2003	HDPE (4-6, 8% by binder weight)	200	30	145-155, 165 (mixing temp)	AC-20
Sinan	2005	HDPE (1,2,3,4% by binder weight)	3000	60	185	AC10
lmam	2008	HDPE (0.75, 1.5 and 3)	5min low speed stirring 1 hour high speed stirring	5 and 60minutes	160-170	60/70
Mahrez	2010	PET	High speed shear mixer	3minutes	130	80/100
Naskar	2010	Plastic bags (LDPE/HDPE) 1,3,5,7%	3500	45	180	VG-30 (60/70)
mishra	2018	LDPE	na		160	VG-30 (60/70)
Garcia	2005	EVA/ EVA and LDPE (5 to 9%)	1200	6	180	60/70
Punith	2007	LDPE (2.5 to 10%)	3500	20min	170	80/100
kumar	2011 (IIT Roorkee)	HDPE/LDPE/EVA (0.1 to 0.9% by binder weight)	1550	1h	170	60/70 and 80/100
Sevil	2014	PVC (1,3,5% by binder weight)	1300	1h	180	160/220
Nouali	2020	LDPE (0.5 to 1.5%)	1200	1h	170	50/70

CMR BITPLAST

Wet Process -Waste Plastic Road

Filling & Despatching of CMR BITPLAST (Waste Plastic Impregnated Bitumen) to the Road site



Hurdles in using waste plastic in bituminous mixes

- In case of drum mixing, the contractors are hesitated to use the Recycled Plastic because of emission of fumes and pollution caused.
- Lack of adequate plant-setting is one of the hurdles for drum-mix plant setting.
- Separation of bitumen and plastic is the one
 of the hurdles for storing the Recycled
 Plastic Modified Bitumen (RPMB). To
 overcome that researchers suggested the
 dynamic storage technique for storing the
 RPMB as similar to the PMB. But, still the
 research has to be done and provide the
 specifications for the storing of RPMB to the
 contractors.
- Hence, the researchers need to work of different types of Recycled Plastics (LDPE/HDPE/PP/PET/PVA) with different dosages and different bitumens (VG10 to VG40) to specify the ranges of stirring speeds and temperatures.

Utilizing batch mix plant for dry process of waste plastic addition

Aggregates coated with Waste plastic in a batch mixing plant

Aggregates coated with Waste plastic in a batch mixing plant

Picture courtesy: L &T

R-85 Research scheme of MoRTH

- The detailed report of this research scheme is available on MoRTH official website Introduction - Need and Importance, Objectives, Scope (morth.nic.in)
- The project was titled as 'Investigation on field performance of bituminous mixes with modified binders'
- The field performance of pavements constructed 4 modified binder bituminous mixes were compared with that of mix prepared of unmodified VG30 binder

The modified binders studied were CRMB55, PMB 70, NRMB 70 and WPMB 70

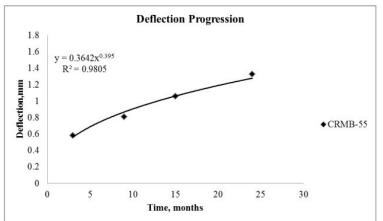
Physical properties of the binders considered in the study

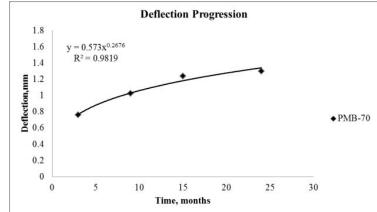
Danasation	Binder Type							
Properties	VG30	PMB70	CRMB55	NRMB70	WPMB70			
Penetration at 25 °C 0.1mm, 100g, 5s	60 to 70 (60 to 70)	50 to 60 (50 to 90)	30 to 40 (< 60)	50 to 60 (50 to 90)	30 to 40 (30 to 50)			
Softening point (R&B), °C	46 (45-55)	60 (55 min)	56 (55 min)	50 (50 min)	62 (60 min)			
Flash Point, °C	> 220 (175 min)	> 220 (220 min)	> 220 (220 min)	> 220 (220 min)	220 (220 min)			
Ductility at 27 °C cm	80 (75 min)	100 +	57.7	78.5	34			
Specific gravity, gm/cc	1 (0.99 min)	1.03	1.03	1	1.045			
Elastic recovery at 15 °C (%)	71	77 (70 min)	68 (50 min)	55 (40 min)	23.67 (50 min)			
Viscosity at 150 °C, (@ 135 °C for VG30), Poise	5.29 (3 min)	7.29 (2-6)	7.87 (2-6)	2.97 (2-6)	5.33 (3-9)			
Separation, Difference in softening Point, °C		(3)	2 (3)	2 (3)	3 (3)			
Aft	er subjecting	to aging in t	hin film over	n	the state of			
Loss in weight (%)	0.42 (1 max)	0.19 (1 max)	0.35 (1 max)	0.3 (1 max)	1.01 (1 max)			
Reduction in penetration of residue at 25 °C (%)	18.23 (48 max)	12.72 (35 max)	28.57 (40 max)	11.67 (40 max)	26.67 (35 max)			
Increase in softening Point, °C	4	2 (6 max)	4 (6 max)	3 (6 max)	7 (6 max)			
Elastic recovery at 25 °C (%)		60 (50 min)	48 (35 min)	32 (25 min)	23 (35 min)			

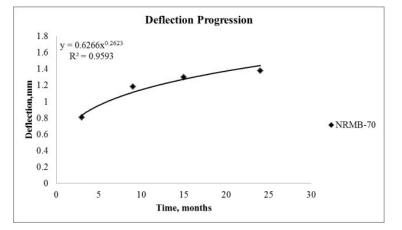
^{*} Values in the parentheses show the specification requirements.

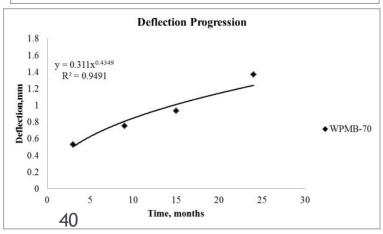
Source: R 85 final report of MoRTH 2013

Pavement deflection studies conducted in R85 research scheme


Pavement roughness studies conducted in R85 research scheme




Axle load surveys conducted prior to test section construction



Progression of Roughness

Research Scheme R-85 report

Chainage		Roughness, m/km						
	Bitumen	First cycle after construction	Second cycle after construction	Third cycle after construction				
84 to 88 VG30		3.27	3.42	3.66				
88 to 92	CRMB55	3.34	3.49	3.58				
92 to 96	PMB70	2.91	3.04	3.25				
96 to 100	NRMB70	3.08	3.20	3.47				
100 to 104	WPMB70	3.30	3.37	3.45				

to or

GOVERNMENT OF INDIA

MINISTRY OF ROAD TRANSPORT & HIGHWAYS AN ISO 9001:2008 CERTIFIED MINISTRY SR&T(R) ZONE

A-5, Sector-62, Noida-201301.

F. No. RW/NH-33044/24/2015/S&R (R)

Dated: the 27th December, 2016

Subject: Use of plastic waste in bituminous mixes in construction of National Highways Madam/Sir,

As per Ministry's circular of even number dated 19th November, 2015 bituminous mixes with the waste plastic is the default mode for the periodic renewal with the hot mixes within 50 km periphery of urban area having population more than five lakhs. In addition to this, it has been decided that in each State/UT, bituminous mixes with the waste plastic may be used as per IRC:SP:98:2013 in at least a stretch 10 km as pilot project. In order to study the performance of the roads constructed with the use of waste plastic, CRRI/reputed engineering college(s) like IITs/NITs/Government Engineering colleges may also be engaged so that the efficiency of the system can be confirmed before making it mandatory in the contracts.

2. In view of the above, all the agencies are requested to take necessary steps for implementation of this circular and send the details of identified stretches to be constructed with waste plastic to Chief Engineer, Standard & Research (Roads). In future, the feedback on the performance of the stretches constructed with waste plastic as prepared by the above mentioned institutes may also be sent to Chief Engineer, Standard & Research (Roads) at every 6 months interval.

this all the agencies are requested to take necessary steps and action taken report may please be send within 15 days of the issue of this circular to the Chief Engineer, SR&T (Roads).