# CONSTRUCTION AND QUALITY CONTROL OF FLEXIBLE AND RIGID PAVEMENTS

#### PROPERTIES OF SOILS FOR PAVEMENT DESIGN

National Rural Infrastructure Development Agency



Ministry of Rural Development

National Institute of Technology



Warangal, Hyderabad

### Lecture-5

#### PROPERTIES OF SOILS FOR PAVEMENT DESIGN

• Engineering Geology + Mechanics ——— Soil Mechanics





#### THREE PHASE SOIL SYSTEM

•Terzaghi's Effective Stress Principle  $\sigma' = \sigma$  - u

## Grain Size





#### Sieve Analysis - Calculations

| Size of sieve | Wt. of soil retained, g | Cumulative Wt. retained, g | Cum. % wt.<br>retained | Percent<br>finer |
|---------------|-------------------------|----------------------------|------------------------|------------------|
| 4.75 mm       |                         |                            |                        |                  |
| 2.36 mm       |                         |                            |                        |                  |
| 1.18 mm       |                         |                            |                        |                  |
| 600μ          |                         |                            |                        |                  |
| 425μ          |                         |                            |                        |                  |
| 300μ          |                         |                            |                        |                  |
| 212μ          |                         |                            |                        |                  |
| 150μ          |                         |                            |                        |                  |
| 75μ           |                         |                            |                        |                  |
| Pan           |                         |                            |                        |                  |



| Time min., t | $ m R_h$ | $R_h = R_h + C_m$ | H <sub>e</sub> (from<br>calbr.<br>chart | D= k<br>√H <sub>e/</sub> t | Р' | P |
|--------------|----------|-------------------|-----------------------------------------|----------------------------|----|---|
| 0.50         |          |                   |                                         |                            |    |   |
| 1.0          |          |                   |                                         |                            |    |   |
| 2.0          |          |                   |                                         |                            |    |   |
| 4.0          |          |                   |                                         |                            |    |   |
| 8            |          |                   |                                         |                            |    |   |
| 15           |          |                   |                                         |                            |    |   |
| 30           |          |                   |                                         |                            |    |   |
| 60           |          |                   |                                         |                            |    |   |
| 120          |          |                   |                                         |                            |    |   |
| 1440         |          |                   |                                         |                            |    |   |

$$P' = \{G/(G-1)\}\ ((R_h + C_m - C_d \pm C_t - 1)$$
  
 $C_m = 0.0005, C_d = 0.002, C_t \& k (from tables)$ 

$$P = P'\left(\frac{Fraction\ passing\ through\ 75\ \mu\ sieve\ used\ for\ hydrometer\ test}{Total\ wt.of\ soil\ taken\ for\ analysis}\right)$$





## **Grain Size Distribution**



$$C_u = D_{60}/D_{10}$$
,  $C_c = D_{30}^2/(D_{60} \times D_{10})$ 

#### **Plasticity**





# **CLAY MINERALS**



## Liquid limit test(Casagrande's)



Concept?

## **LL-Cone penetrometer Method**





## **Plastic Limit Test**

• Shear strength- 100 times that at LL



## **Shrinkage Limit Test**



$$W_s = W_1 - \{(V_1 - V_2) \text{ W} / W_s \}$$

#### Classification of Soils



#### **Textural Classification**



#### **Modified Textural Classification**



#### **AASHTO** Classification

| General Description                             |                           | Granula | ır material (359 | % or less pa | ssing 75-µm | Sieve)       |        |        | ıd Clay materials (more than 35%<br>passing 75-µm Sieve) |        |                |
|-------------------------------------------------|---------------------------|---------|------------------|--------------|-------------|--------------|--------|--------|----------------------------------------------------------|--------|----------------|
| Group Classification                            | A-1                       |         | A-3              | A-2          |             |              | A-4    | A-5    | A-6                                                      | A-7    |                |
|                                                 | A-1-a                     | A-1-b   |                  | A-2-4        | A-2-5       | A-2-6        | A-2-7  |        |                                                          |        | A-7-5<br>A-7-6 |
| Sieve analysis: % Passing                       | 31153                     |         |                  |              |             |              | 18     |        |                                                          |        |                |
| 2.0 mm Sieve                                    | 50 max                    |         |                  |              |             |              |        |        |                                                          |        |                |
| 425-μm Sieve                                    | 30 max                    | 50 max  | 51 min           |              |             |              |        |        |                                                          |        |                |
| 75-µm Sieve                                     | 15 max                    | 25 max  | 10 max           | 35 max       | 35 max      | 35 max       | 35 max | 36 min | 36 min                                                   | 36 min | 36 min         |
| Characteristics of soil pass                    | sing 425-µm               | sieve:  |                  |              |             |              |        |        |                                                          |        |                |
| Liquid limit                                    |                           |         |                  | 40 max       | 41 min      | 40 max       | 41 min | 40 max | 41 min                                                   | 40 max | 41 min         |
| Plasticity index                                | 6 max                     | 6 max   | NP               | 10 max       | 10 max      | 11 min       | 11 min | 10 max | 10 max                                                   | 11 min | 11 min         |
| Group index                                     |                           |         | Zero             |              |             | 4 m          | iax    | 8 max  | 12 max                                                   | 16 max | 20 max         |
| Usual type of significant constituent materials | Stone fragn<br>gravel and |         | Fine sand        | Silty        | or clayey g | ravel and sa | and    | Silty  | soil soil                                                | Claye  | ey soil        |
| General rating as                               |                           |         | Excel            | lent to good | l           |              |        |        | Fair to 1                                                | poor   |                |

## Group Index (GI)

GI = 0.2a + 0.005ac + 0.01bd

Where, a = Percent passing -75  $\mu$  sieve, >35 <75 expressed as (0-40)

b = Percent passing -75  $\mu$  sieve, >15 < 55 expressed as (0-40)

c = Liquid limit > 40 < 60 expressed as (0-20)

d = Plasticity index > 10 < 30 expressed as (0-20)













## Comparison Between AASHTO & Unified Classification Systems

|    | S.N0 | AASHTO System                                                                                                                                                                                       | Unified System                                                                                                                                         |
|----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | 1.   | Limiting fines content to demarcate fine & coarse grained soils is 35%. >35% fines- Fine grained soil. This limiting value is somewhat better as soils with 35% fines behave as fine grained soils. | Limiting fines content to demarcate fine & coarse grained soils is 50%. >50% fines- Fine grained soil, 50% fines as limiting value is somewhat higher. |
|    | 2.   | 2 mm size is taken for gravel size.                                                                                                                                                                 | 4.75 mm is taken for gravel size.                                                                                                                      |
|    | 3.   | Gravels & sands are not clearly demarcated. A2 group contains variety of soils                                                                                                                      | Gravels &sand are clearly demarcated.                                                                                                                  |
|    | 4.   | Symbols are little difficult to remember.                                                                                                                                                           | Symbols can be more easily remembered.                                                                                                                 |
|    | 5.   | There is no place for organic soils.                                                                                                                                                                | Organic soils are classifies under OI, OH &peat                                                                                                        |
| 31 | 6.   | Process of elimination is time consuming.                                                                                                                                                           | More convenient to use.                                                                                                                                |

## **Standard Proctor Test**



Compaction sample: Passing 19 mm size. In case + 19 mm size > 5%, Large size mould 2250 cc is to be used with – 40 mm size sample.

<u>IS Light Compaction</u>: Mould = 1000 cc

No. of layers: 3

No. of blows/layer = 25

Wt. of hammer = 2.6 kg

Ht. of fall = 31 cm

IS Heavy Compaction: Mould =
1000cc

No. of layers = 5

No. of blows/layer = 25

Wt. of hammer = 4.89 kg

Ht. of fall = 45 cm

## Compaction test- Calculations

| Details                            | 1 | 2 | 3 | 4 | 5 |
|------------------------------------|---|---|---|---|---|
| Wet Wt. of soil (W), g             |   |   |   |   |   |
| Bulk density, [/, g/cc             |   |   |   |   |   |
| Dry density, Y <sub>d</sub> , g.cc |   |   |   |   |   |
| Water Content -                    |   |   |   |   |   |
| Cup + wet soil $(w_1)g$            |   |   |   |   |   |
| Cup + Dry soil (w <sub>2)</sub> g  |   |   |   |   |   |
| Wt. of cup (w <sub>3</sub> ) g     |   |   |   |   |   |
| W.C. (%)                           |   |   |   |   |   |
| $(w_1 - w_2) / (w_2 - w_3)$        |   |   |   |   |   |





## Field Density Tests





#### **Core Cutter Method**



Field density – Relative Compaction

### Sand Replacement Method

Field Density Tests Relative Compaction



## Field Density Tests







#### Test details

**CBR Sample**: Passing through 19 mm. In case of fraction > 19 mm is present, it is to be accounted.

Soil fraction + 4.75 mm & - 19 mm is added in equal amount to compensate the omitted + 19 mm fraction.

**Compaction**: 1. *Light compaction*: 3 layers, 56 blows/layer, Wt. hammer = 2.6 kg falling from 31 cm ht.

2. *Heavy compaction*: 5 layers, 56 blows/layer, Wt. of hammer = 4.89

## Soaking of CBR Sample



| Penetration(m m)      | Applied Load (kg)   |
|-----------------------|---------------------|
| 0.50                  |                     |
| 1.00                  |                     |
| 1.50                  |                     |
| 2.00                  |                     |
| 2.50                  |                     |
| 4.00                  |                     |
| 5.00                  |                     |
| 7.50                  |                     |
| 10.00                 |                     |
| National2.50 ute of T | echnology, Warangal |



# Typical CBR Values Table

| USCS Soil<br>Class | Soil Type                | Laboratory<br>CBR Range | Field CBR<br>Range |
|--------------------|--------------------------|-------------------------|--------------------|
| GW                 | Well graded sandy gravel | 20 - 60                 | 60 - 80            |
| SW                 | Well graded sand         | 15 – 40                 | 20 – 40            |
| SC                 | Sandy clay               | 4-7                     | 10 – 20            |
| CL                 | Clay                     | 1-3                     | 5 – 15             |

Note: The CBR value of the standard sample is assumed to be 100

#### **UNCONFINED COMPRESSION TEST**



$$\tau_f = c + \sigma \tan \phi$$



