Intelligent Compaction for Improved Performance of Rural Roads

Dr Anjan Kumar S
Department of Civil Engineering
Indian Institute of Technology Guwahati

Compaction

- Control
 - Moisture
 - Density
 - Lift

Variation of percent compaction from Mean

Compaction

- Density
 - Stress distribution
- Stiffness
 - Resist deformation

Moisture Temperat ure

Temperature

- Challenges to achieve density/stiffness
 - Material testing
 - Quality CONTROL
 - Roller parameters
 - Site engineer
 - Operator

Consequences

Compaction

- Rural Roads
 - Embankment
 - Subgrade
 - Granular
 - Surface treatment
- Cost of Compaction
 - 600 p/h
 - 5000 per km

- Intelligent compaction
 - Continuous assessment of mechanistic material properties (e.g., stiffness, modulus) through roller vibration monitoring;
 - On-the-fly modification of vibration amplitude and frequency;
 - Integrated global positioning system to provide a complete geographic information system-based record of the

- IC System
 - Accelerometer
 - GPS recorder
 - Data logger
 - Display

Machine-integrated sensors to measure drum/machine response to soil behaviour

- IC System
 - Compaction
 - Reaction

			-		
Measureme nt Value	Manufactur es	Relations Used			
Compactio n Meter Value (CMV)	Dynapac, Caterpillar, Hamm, Volvo		Spectral analysis		
Compactio n Control Value (CCV)	Sakai	CCV=[Spectral allalysis		
Stiffness, \mathbf{K}_{s}	Ammann]		
Vibration Modulus, E _{vib}	Bomag		Force displacemen		
Machine Drive Power (MDP)	Caterpillar		- Energy to propel		

Quality Assurance

Option 1

Quality Assurance

Quality Assurance

RMV and Spot Measurement Value (SMV)

No. Factors AffectiAssociation

- 1 Heterogeneity in underlyingupport conditions
- 2 High moisture content variation
- 3 Narrow range of measurements

Machine operation setting variation and roller "jumping"

5 **Nnif**orm drum/soil contact conditions

Uncertainty in spatial pairing of point measurements and roller MVs

7 Limited number of measurements

Not enough information to interpret the results

Instrinsic measurement errors associated with roller MVs and in situ plaisttmeasurements

Data Presentation

Legend M7PrP1K

Data Interpretation

Lift Placement

BEFORE

Mapping

Conventional				Intelligent					
Item	Cost (USD) per unit	Unit	No. of Units	Total cost (USD)	Item	Cost (USD) per unit	Unit	No. of Units	Total cost (USD)
Roller	36	hour	10	360	Roller	42.61	hour	7.7	328
Operat or	30	hour	10	300	Operat or	36	hour	7.7	277
GPS	0	hour	10	0	GPS	0.89	hour	7.7	7
QC/QA	$\begin{array}{c} 0.0478 \\ 4 \end{array}$	m^2	3500	167	QC/QA	$0.0047 \\ 84$	m^2	3500	17
			Total	827				Total	628
	(PER LANE KM)								

- Quality
 - Monitor
 - Control
- Time & Cost
- Improved Performance
- Reduced Pollution

