Advanced Programme - Planning, Design and Construction of Long Span Bridges

Considerations in Design of Bridges & Culverts

National Rural Infrastructure
Development Agency

Ministry of Rural Development

Engineering Staff College of India (ESCI)

Hyderabad

Lecture 2

Considerations in Design of Bridges & Culverts

Classification

- Bridges
- Small: L < 30 m Span < 10 m
- Minor: L < 60 m
- Major: > 60 m
- Culvert: Cross Drainage Structure < 6 m in Length

Preliminary Design

- Location
- Hydraulic design to determine required length and profile grade
- Type selection
- Geotechnical Design
- Structural Design

Location of Bridges & Culverts

- Whether there is an established stream or not, whenever a road crosses a valley the lowest part requires a culvert.
- When there is an established stream the culvert should follow existing alignment, unless the alignment can be improved.
- The gradient of the culvert should be the same as the gradient of the stream.
- Measures may be required to ensure that the watercourse does not move.
- As well as venting at the lowest point, it is good practice to install culverts for cross drainage at regular intervals down the grade.
- As a general rule, there should be at least one culvert every 300m (?), unless the road follows a ridge.
- A gradient of 2 to 4% is advisable where silts are carried in the flow; a minimum of 0.5% is recommended for clear water.
- It is also important to set the culvert invert at the same level as the natural steam bed.
- Where an established stream is met at an angle to the road alignment, it is usually better to follow the line of stream with a skewed culvert, even though the greater length will increase the construction cost. See fig 4.1.
- Any change of stream channel must be constructed so that there is no possibility of the stream regaining its original course.

Stream Gage Data

Flood-Frequency Rating Curve

Rational Method

$$Q = k_c \cdot C \cdot I \cdot A$$

 $Q = \text{discharge (cfs or m}^3/\text{s)}$

 k_c = constant (1.0 for English units or 0.00278 for metric units)

C = Runoff Coefficient

I = Rainfall Intensity (in/hr or mm/hr)

A = Drainage Area (acres or hectares)

Drainage Area Delineation

Peak Runn-off

Dickens Formula

$$Q=CM^{3/4}$$

- Q = the peak run-off in m³/s and M is the catchment area in sq. km
- C = 11-14 where the annual rainfall is 60-120 cm
 - = 14 19 where the annual rainfall is more than 120 cm
 - = 22 in Western Ghats

Peak Run-off

```
Q = 0.028 \, PAI_{c}
```

 $Q = max. run-off in m^3/s$

A = area of catchment in hectares

I_C = critical intensity of rainfall in cm per hour

P = co-efficient of run-off for the catchment characteristics

Table 4.1 Maximum Value of P in the Formula $Q = 0.028 \text{ PAI}_{C}$

Steep, bare	rock and also city pavements	0.90
Rock, steep but wooded		0.80
Plateaus, lightly covered		0.70
Clayey soils, stiff and bare		0.60
-do-	lightly covered	0.50
Loam, lightly cultivated or covered		0.40
-do-	largely cultivated	0.30
Sandy soil, light growth		0.20
-do-	covered, heavy brush	0.10

Manning's Equation

$$Q = \frac{1.486}{n} \cdot A \cdot R^{\frac{2}{3}} \cdot \sqrt{S_0}$$

n = Roughness Coefficient

A = Area

R = Hydraulic Radius = A / P

P = Wetted Perimeter

S = Hydraulic Gradient (channel slope)

Coefficient of Rugosity

Sr. No.	Surface (Natural Stream)	Perfect	Good	Fair	Bad
1.	Clear, straight bank, no rift or deep pools	0.025	0.0275	0.030	0.033
2.	Same as (1) but some weeds & stones	0.030	0.0330	0.035	0.040
3.	Winding, some pools and shoals, clear	0.035	0.040	0.045	0.050
4.	Same as (3) but more ineffective slope and sections	0.040	0.045	0.050	0.055
5.	Same as (3) but some weeds and stones	0.033	0.035	0.040	0.045
6.	Same as (4) but stony sections	0.045	0.050	0.055	0.060
7.	Sluggish river reaches rather weedy.	0.050	0.060	0.070	0.080
8.	Very weedy reaches	0.075	0.100	0.125	0.150

Cross Sections

Catchment Area		Distance (u/s and d/s of the crossing) a which cross-sections should be taken	
1.	Upto 3.0 sq. km	100 m	
2.	From 3.0 to 15 sq. km	300 m	
3.	Over 15 sq. km	500 m	

Stream Valley Cross-sections

Velocity Distribution in a Stream

Constriction in a Valley

Encroachment by Roadway Fill

Scour Depth (IRC 78-2000)

Mean depth of scour
$$d_{sm} = 1.34 \left[\frac{Q_b^2}{K_{sf}} \right]^{3}$$

Q_h = Discharge in cumecs per width.

K_{sf} = The silt factor for representative sample of bed material obtained up to the level of deepest anticipated scour.

$$=$$
 1.76 $\sqrt{d_m}$

d_m = Weighted mean diameter of bed material in mm.

ð	Type of bed material	d _m	K _{ef}
3	Coarse silt Silt/fine sand Medium sand Coarse sand Fine bajri and sand Heavy sand	0.04 0.081 to 0.158 0.233 to 0.505 0.725 0.988 1.29 to 2.00	0.35 0.5 to 0.6 0.8 to 1.25 1.5 1.75 2.0 to 2.42

Value of silt factor (K_{sf}) for various bed materials.

Sr. No.	Bed Material	Grain size in mm	Silt factor(K _{sf})
1. Silt	Fine	0.081	0.50
	Fine	0.120	0.60
	Fine	0.158	0.70
	Medium	0.233	0.85
	Standard	0.323	1.00
2. Sand	Medium	0.505	1.25
	Coarse	0.725	1.50
	Mixed with fine bajri 0.988	1.75	
	Heavy	1.290	2.00

Max. Depth of Scour for Design of Foundations

Hydrometer Analysis

Subsurface Geologic Profile

Culverts

- Definition structure to convey surface runoff through embankments, near ground.
- Round pipe, rectangular box, arch, ellipse, bottomless, or other shapes.
- Concrete, steel, corrugated metal, polyethylene, fiberglass, or other materials.

Culverts

End
 treatment
 includes
 projected,
 flared, &
 head and
 wing walls

Culverts are smaller bridges, normally with one span built across small streams, drains or sewer carrying road on top

Concrete Box Culvert

Box culvert with fish passage

Corrugated metal horseshoe culvert

Triple Box Culvert

Culvert or Bridge?

Definition Sketch

Culvert Design - Basics

- Top of culvert not used as pavement surface (unlike bridge), usually less than 6 m span
- > 6 m use a bridge
- Three locations
 - Bottom of Depression (no watercourse)
 - Natural stream intersection with roadway (Majority)
 - Locations where side ditch surface drainage must cross roadway

Hydrologic and Economic Considerations

- Alignment and grade of culvert (with respect to roadway) - important
- Similar to open channel
- Design flow rate based on storm with acceptable return period (frequency)

Culvert Design Steps

- Obtain site data and roadway cross section at culvert crossing location (with approximation of stream elevation) – best is natural stream location, alignment, and slope (may be expensive though)
- Establish inlet/outlet elevations, length, and slope of culvert

Culvert Design Steps

- Determine allowable headwater depth (and probable tailwater depth) during design flood – control on design size – f(topography and nearby land use)
- Select type and size of culvert
 - Examine need for energy dissipaters

Headwater Depth

- Constriction due to culvert creates increase in depth of water just upstream
- Allowable level of headwater upstream usually controls culvert size and inlet geometry
- Allowable headwater depth depends on topography and land use in immediate vicinity

Types of culvert flow

- Type of flow depends on total energy available between inlet and outlet
- Inlet control
 - Flow is controlled by headwater depth and inlet geometry
 - Usually occurs when slope of culvert is steep and outlet is not submerged
 - Supercritical, high v, low d
 - Most typical
 - Following methods ignore velocity head

Types of culvert flow

Outlet control

- When flow is governed by combination of headwater depth, entrance geometry, tailwater elevation, and slope, roughness, and length of culvert
- Subcritical flow
- Frequently occur on flat slopes
- Concept is to find the required HW depth to sustain Q flow
- Tail water depth often not known (need a model), so may not be able to estimate for outlet control conditions

Culvert Scour Prevention

Riprap

Gabions

Grade Control Scour Prevention

 Concrete mattress downstream of grade control structure.

 Riprap placed downstream of grade control structure.

Pipe Culvert in BC Soil

Waffle Slab for Expansive Soils

Classification of Bridges

Based on Mechanics

- Beam
- Cantilever
- Arch
- Suspension
- Cable-stayed
- Truss

Classification of Bridges

Material

- Concrete
- Steel
- Timber
- Composite

Classification of Bridges

Support

- Simply Supported
- Continuous
- Fixed
- Cantilever

Crossings – Skew and Square

Cable-Stayed Bridge

Components of Bridge

- 1. Caisson/Raft Foundation
- 2. Bridge Pier
- 3. Bearing
- 4. Deck Slab
- 5. Roadway
- 6. Railing
- 7. Abutment

Bridge Design Process

Bridge Survey

- flood plain cross sections
- inspection reports
- existing bridge (scour, etc)
- · water elevations
- · photos
- existing roadway profile

Geotechnical Report

- soil / geologicalformations
- slopes and grading
- foundation problems
- ·soil prop.'s phi angles etc

<u>Factors affecting choice of</u> <u>superstructure</u>

- location, city or rural
- · span length
- · vertical clearance
- maintainability
- · environmental concerns
- transportation to site issues
- · cost

Factors affecting choice of substructure

- · location and geometry
- subsoil conditions
- · height of column

<u>Substructures</u>

The substructure transfers the superstructure loads to the foundations.

Abutments

- Integral Abutment
- Non-Integral Abutment
- Semi-Deep Abutment used when spanning divided highways to help shorten span
- Open C.C. Abutment beam supported by columns and footings

<u>Piers</u>

- Open Concrete Piers beams supported by columns and footings (or drilled shafts) or a concrete diaphragm (Pre-Stressed Girder)
- · Pile Cap Bent beams supported by piling
- Hammer Head Bent single oval or rectangular column and footing.
- Spread footings are used when rock or soil can support the structure.
- Piles rectangular c.c. supported by HP or Cast in Place piles
- <u>Drilled Shafts/Well Foundations</u> holes drilled into bedrock filled with concrete

Maximum Depth of Scour for Design of Foundations

- Piers: 2d_m
- Abutments: 1.27d_m with Approach Retained or Lowest Bed level or 2d_m with Scour ALL Around
- Flood with Seismic Combination 90% of the above
- For Raft or Open Foundations: 1.27d_m for Straight Reach & 1.5d_m in Bends

Design Limits

- Max. Bearing Pressure in Rock: < 3 MPA
- Differential Settlement: 1 in 400
- Factor of Safety Without With EQ.
- Against Overturning 2.0 1.5
- Against Sliding
 1.5
 1.25
- Against Deep Seated F 1.25 1.15

Other Project Considerations:
In-Water Work Periods
Environmental Restrictions
Noise or Vibration Constraints
Construction Access/Traffic Control

Exploration Log

DRILL LOG

	OREGON DEPARTME	NT OF TRANSPORTAT	TION		Page 1 o	of 1
			Hole No.	DH-2-03		
Project I5: Willamette River Bridge (MF	Purpose Willamette River Bridge Fnd. Inv.		E.A. No.	E.A. No. PE000721-010		
Highway Pacific Hwy 001 County Lane				Key No. 13110		
De Location Northing: 267,481.07 Easting: 1,295,707.11			Start Card	Start Card No.		
Equipment CME 75	ipment CME 75 Driller Emie Phillips		Bridge No	Bridge No. 19620		
Project Geologist Bernie Kleutsch	ect Geologist Bernie Kleutsch Recorder John Rehm		Ground Elev. 131.67m			
Start Date March 28, 2003	March 28, 2003 End Date March 28, 2003 Total Depth 10.95m		Tube Height			
Test Type "A" - Auger Core "X" - Auger "C" - Core, Barrel Type "N" - Standard Penetration "U" - Undisturbed Sample "T" - Test Pit	- Auger Core Discontinuity Shape Surface Roughness WL - Wire Line - Auger J - Joint PI - Planar P - Polished WL - Wire Line - Core, Barrel Type F - Fault C - Curved SI - Slickensided HS - Hollow Stem - Standard Penetration B - Bedding U - Undulating Sm - Smooth SA - Solid Fligh AI - Undisturbed Sample Fo - Foliation St - Stepped R - Rough		Drilling Methods WL - Wire Line HS - Hollow Stem Auger DP - Drill Fluid SA - Solid Fligh Auger CA - Casing Advancer	Drilling Abbreviations Drilling Remarks LW - Lost Water WR - Water Return WC - Water Color D - Down Pressure DR - Drill Rate DA - Drill Action		
Depth (meters) Test Type, No. Percent Recovery Driving Resistance Discontinuity Data Property On Page Property Prope	Material Descript SOIL: Soil Name, USCS, Color, PI Moisture, Consistency/R Texture, Cementation, St ROCK: Rock Name, Color, Weath Discontinuity Spacing, Jc Core Recovery, RQD, Fo	asticity, elative Density, rructure, Origin. ering, Hardness, oint Filling, rmation Name.	nit Description	Graphic Log Drilling Methods, Size	and Remarks Water Level/ Date	Backfill/ Instrumentation
C1 46.0 1 - C2 39.0	C-1 (0.00 - 1.83) GRAVEL and COBE size; GW; Gray, Nonplastic; fines was (Alluvium) C-2 (1.83 - 3.35) GRAVEL up to 3 inc Nonplastic; (Alluvium)	thed away, AC th GW; (Fill); 0.91 - GRAA COBE inch size; GW; Gray; subror subar	nen GRAVEL; gray; nonplastic	НОТВ	coring.	
C3 100.0 RQD = 98% - 4 -	C-3 (3.35 - 4.87) BASALT; Gray, Fres (R3); RQD = 98%; wide jointed with straining land prealed join compression = 40,274 kPa; Intursive E C-4 (4.87 - 6.39) BASALT; Gray to 6.8 Brown; Fresh then Moderately Weath RQD = 74%; wide jointed with spacing	pacing up to 4 feet; this; unconfined Basialt BASA 6.39m brown then i	- 6.39 ALT; gray to n then light n; fresh to 6.39m moderately hered; (R2) to wide jointed; ing up to 4 feet;			
- 6 -	then very close jointed; calcite in heale in joints below 6.08m; unconfined com kPa; Intrusive Basalt	ed joints; yellow silt joints	calcite in joints; silt in joints in last 0.3m (Intrusive Basalt);			
C5 100.0 RQD = 70%	C-5 (6.39 - 7.91) Tuffaceous SANDSTONE/SLITTONE/LAPILLI TUFF; Light Brown grading to from Predominately Decomposed to F Soft (R0) to Medium Hard (R3); RQ0 moderately close jointed with spacing sandstone and silistone dipping at 45 discotoration along joints to 7.3m; calc landil tuff.	UFF to 7.3m then Light Gray; grades resh; Extremely = 70%; close to up to 2 feet; degrees; ite comentation in	bedded beous DSTONE; brown ng to gray; beminately	7.		
8 - C6 88.0 RQD = 93%	lapilii tuff; Eugene Fm C-6 (7,91 - 9.43) LAPILLI TUFF; Gree Medium Hard (R3); RQD = 93%; wide cemented; unconfined compression = Eugene Fm	en Gray; Fresh; jointed; calcite 39,329 kPa; (R0) to close close (Euge	mposed to fresh; to (R3); very to moderately jointed ene Fm);			
C7 100.0 RQD = 100%	C-7 (9.43 - 10.95) LAPILLI TUFF; Gre Soft (R2); RQD = 100%; wide jointed; unconfined compression = 24,105 kPa	gray; calcite cemented; (R3); calcite clasts	LLI TUFF; green fresh; (R2) to wide jointed; te cemented	****		
11 -		10.95 End o	of Hole			7 7 7

Subsurface Geologic Profile

Foundation type depends on combinations of:

Foundation Materials & Conditions

Structure Type & Loads

Performance Criteria

Site Conditions/Construction Constraints

Extreme Event Effects

Seismic Loads (Liquefaction Potential)

Scour Depths

Costs & Construction Time

49C

Types of Foundations

Shallow Foundations
Spread Footings (on engineered fill)
MSE Abutment Wall
Deep Foundations
Driven Piles
Drilled Shafts/Bored Piles
Micropiles

Typical Isolated Footings

(e)

(d)

Column Footing

Pile Cap Column Footing

Spread Footing Design
Settlement
Bearing Resistance
Sliding Resistance
Overturning (eccentricity)
Overall Stability (slope stability)

Thin Weak Deposit

Settlements.

Footing Depth

- 1. Depth of Erosion/Scour
- 2. Fill/Uncompacted
- 2. Zone of Moisture Changes
- 3. Organic Matter
- 4. Maximum Depth of Unsupported Excavation

$$z_f = \frac{2c}{(SF)\gamma \sqrt{K}} - \frac{q_o}{(SF)\gamma}$$

Contact Pressures

Edge stress depends on the depth of footing D

(a)

When:
$$H/B = \infty$$
 $q \approx 0.64 q_0$
 $H/B = 1.00$ $q \approx 0.70 q_0$
 $H/B = 0.25$ $q \approx 0.92 q_0$
(b)

Effect of Raising Water Table

- The Foundation may Float
- Additional Settlement due to reduced Effective Stress

Zone of Fluctuation in Expansive Soils

Identification of Expansive Soils; Min. Pressure Reqd. and Swell

Potential

Potential soil volume change* as related to the plasticity index I_P , liquid limit w_L *, and expansion index E_I

Potential for volume change	Plasticity index I _P	Shrinkage limit w _S , %	Liquid limit w_L , %	Expansion index E_I
Low	< 18	> 15	20-35	21-50
Medium	15-28	10-15	35-50	51-90
High	25-41	7–12	50-70	91-130
Very high	> 35	< 11	> 70	> 130

$$\log P_s = 2.132 + 0.0208w_L + 0.665\rho_d - 0.0269w_N \qquad (kg/cm^2)$$

$$\log S_p = 0.0367w_L - 0.0833w_N + 0.458$$
 (percent)

Reinforced Soil Structures for Bridge Approaches & Abutments

Contents

- Externally/Internally stabilized
- Reinforced soil walls & Reinforced soil slopes
- Extensible versus inextensible reinforcement
- Role of facing
- Reinforced soil walls

Equilibrium of a Wedge of Soil

Externally Stabilized Retaining Structures

Mass Gravity Retaining Walls

PCC Retaining Walls

RR Masonry Retaining Walls

Gabion Retaining Walls

Crib Retaining Walls

RCC Retaining Walls

Counterfort Retaining Wall

Cantilever Retaining Wall

Buttress Retaining Wall

Internally stabilized retaining structures

Internally Stabilized Retaining Structures

- Reinforced soil walls
- Anchored earth walls
- Soil nail walls

Reinforced Soil Walls

Anchored Earth Walls

Soil Nail Walls

Mixed Type of Retaining Structures

Mixed Type of Retaining Structures

- Anchored sheet piles
- Tie-back retaining walls

Tie-back Retaining Walls

Reinforced Soil Walls & Reinforced Soil Slopes

Fill Retention Options

Definition of Reinforced Soil Wall and Slope

 $\beta \ge 70^{\circ}$: Reinforced Soil Wall

 β < 70°: Reinforced Soil Slope

Reinforced Wall, Steep & Shallow Slope

Cost comparison – Walls vs. Slopes

Facing

- Precast concrete discrete panels
- Precast concrete segmental blocks
- Gabions
- Welded wire mesh with stone fill

Reinforced Soil Wall

Advantage - reinforced soil slopes

- Most economic solution in many cases
- Use locally available soils
- No need of concrete panels or blocks
- Faster construction
- Sustainable and aesthetically pleasing

Stress-strain behaviour of soil and reinforcement

Based on structure stiffness

Typical steel strip reinforced soil wall

$$S_r = \frac{E b t}{S_h S_v}$$
=
$$\frac{200000 *0.050 *0.004}{0.8 *0.8}$$
= 62.5 MPa

Typical Geogrid reinforced soil wall

$$S_r = \frac{JR_c}{S_v} = \frac{1000 * 1}{0.8}$$

= 1250 kPa
= 1.25 MPa

S_r > 20 MPa, Inextensible S_r < 20 MPa, extensible Ressdi-2020

Reinforcement types

- Inextensible
 - Steel strips
 - Welded steel bar mats
 - Welded steel wire mesh
- Extensible
 - Geogrids
 - Geotextiles

Strain in reinforcement at design loads (BS 8006)

 Extensible Reinforcement: sustains design loads at strains greater than 1 %

 Inextensible Reinforcement: sustains design loads at strains less than 1 %

Geostrips / Polymeric Straps

- Made of high tenacity polyester filament yarns
- Elongation at break typically 10-12%

Tension in the Reinforcement

Coherent Gravity & Tie-back Wedge Method

FHWA/AASHTO/ IRC Guidelines

Why facing?

Formwork during construction

Assist reinforcement in retaining the active zone

Surficial instability and erosion

Aesthetics

Facing Options – Walls

- Full-height concrete panels
- Discrete/Segmental concrete panels
- Segmental concrete blocks
- Welded wire mesh
- Geocells
- Gabions
- Full-height Rigid facing

Facing Options – Reinforced Soil Steep Slopes

 $(45 < \beta < 70^{\circ})$

Wrap-around with vegetation

- With temporary formwork
- Bagwork facing
- Sacrifical welded wire mesh cages

Without Wrap-around

- Welded wire mesh with stone
- Gabions
- Geocells

Facing Options – Reinforced Steep Slopes (β≤45°)

- No facing required
- Short length (1.2 -2.0 m) secondary reinforcements at 0.3 to 0.4 m spacing, to facilitate compaction and ensure surficial stability
- Vegetation for erosion control

Standard Model

- Extensible/in-extensible reinforcement with vertical spacing in the range of about 400-800 mm.
- Different types of facings; contribution of facing to stability usually ignored
- Designed using tie-back wedge/coherent gravity/simplified methods

Geosynthetic Reinforced Soil Walls with Closely Spaced Reinforcements

Effect of reinforcement

spacing

$$Ka = \frac{1 \sin 32}{1 + \sin 32} = 0.307$$

$$Pa = 0.5 Ka \gamma H^2 = 197 kN$$

Reinforcement as tie-backs

Effect of closely spaced reinforcement

Effect of Close Spacing of Reinforcement

 Even relatively weak reinforcements (here cotton bed sheets) can support large loads

Effect of close spacing of Reinforcement

FHWA-TFHRC GRS BRIDGE PIER LOADED TO 10 TSF M. Adams

6 m high Geosynthetic Reinforced Soil Structure Loaded to 1000 kPa vertical stress

- NO FAILURE

Effect of Close Spacing of Reinforcement

9 m high GRS with 30° negative batter supporting surcharge

GRS Integral Bridge Abutments

FHWA suggested typical specs for GRS Bridge Abutments

- Vertical spacing = 200 mm
- Facing: Segmental concrete Blocks of 200 mm height
- Reinforcement: Woven polypropylene geotextile with tensile strength of 70 kN/m
- Fill: Well-graded granular fill with $\phi \ge 38^{\circ}$

GEOTECHNICAL ENGINEERING

