THE WORLD BANK / PMGSY

New Delhi, India 24-26 May, 2022

NRIDA

NEW TECHNOLOGIES AND INNOVATIONS IN RURAL ROADS

Gordon R. Keller, PE, GE
Geotechnical Engineer
GENESEE GEOTECHNICAL
gordonrkeller@gmail.com

CHALLENGES IN THE INDIA HILL ROADS PROGRAM

- Steep, Unstable Terrain and High Rainfall
- Short Construction Season
- Difficult Working Conditions
- High Construction Costs-\$\$\$
- Inexperienced Contractors
- Difficult to Find Trained Engineers
- Other Regions are Very Flat-Drainage is Difficult

Innovative, Appropriate Technologies

Innovative Measures/Techniques/Tools

USE OF GEOSYNTHETICS

- GRS/MSE Retaining Structures
- Reinforced Soil Structures / Deep Patch
- Geocells, TRM & Erosion Control

BRIDGE & DRAINAGE WORKS

- ABC for Bridges
- GRS Bridge Abutments; Buried Bridges
- Stream Simulation & Fill Overtopping Protection

TOOLS AND INFORMATION

- DCP/Site Characterization
- Soil Bioengineering
- GIS/ESRI; LIDAR; Drones
- Climate Models / VIC
- Asset Management
- BMPs

Geosynthetics in Retaining Structures

MSE/GRS Retaining Structures

Geosynthetics in Retaining Structures

RSS Fills / Embankments

Landslide Prevention and Mitigation

Deep Patch

Use of Geocells & TRM

Use of Geocells & TRM

Road and drain incorporated. Drain can also be to side of road. (Hall & Hall 2007).

Dimpled formwork creates interlock between cells poured in situ (thin geocell formwork). (Hall & Hall 2007).

Strips of thick (>20 mm) geocell formwork (National Rural

Geocell formwork expanded and tensioned and ready

Geosynthetic Erosion Control Products

Bridges and Drainage Works

ABC and GRS Bridge Abutments

Accelerated Bridge Construction (ABC) & Modular Units

Justin Dahlberg, PE lowa State University Bridge Engr. Center

GRS-IBS Abutments

Buried Bridges (Flexible Long-Span Structures)

Flooding and Drainage Mitigations

FLOOD RESISTENT CULVERT DESIGN

-Q50-100 vs Q25--**\$\$**

-Span ≥ Bankfull Width-SS

-HW/D ≤ 1.0

Fill Overtopping Protection

Overtopping Protection

Rock Mattress 6 Years Later

French Fire, Sierra NF

Newly Installed TRM

Dynamic Cone Penetrometer DCP

DCP-DN Design

Soil Bioengineering and Biotechnical Slope Stabilization

Perspective View of Slope with Brush Layering

Adapted from NLHS Englanding Field hisretbook , Chapter 18 (19

ESRI/GIS/LIDAR

Vermont DOT

Terry Bills, ESRI

Burn Severity and Debris Slide Risk Mapping

Figure 1. Map of the watershed which was the source of the debris flow impacting the Yokoji-Zen Mountain Center. The point locations (1-3) are referred to in the text.

REMOTE SENSING-GIS, LIDAR, AIR PHOTOS,

Use of Drones

Climate Models- VIC Variable Infiltration Capacity

Percent change in bankfull flow between historical and future (2080s) time periods for road segments within 90 m (200 feet) of streams.

Snow Water Equivalent

Asset Management

	Operational maintenance level						
National Forest	Basic custodial care (closed) ^a	High clearanc e Vehicles ^b	Suitable for passenge r cars ^c	Moderate degree of user comfort ^d	High degree of user comfort ^e	Total	
	Miles						
Ashley	23	974	339	157	88	1,581	
Boise	1,527	2,503	542	14		4,587	
Bridger-Teton	572	983	385	214	-	2,154	
Caribou-Targhee	461	1,529	577	177	23	2,767	
Dixie	992	2,075	460	49	15	3,592	
Fishlake	43	1,710	168	12	7	1,941	
Humboldt-Toiyabe	493	4,351	626	69	17	5,556	
Manti-La Sal	302	1,616	290	9		2,217	
Payette	842	1,649	428	36	4	2.959	
Salmon-Challis	1,198	2,345	342	41	2	3,928	
Sawtooth	268	1,341	270	17	21	1,916	
Uinta-Wasatch- Cache	182	1,689	96	141	125	2,570	
Total	6,903	22,764	4,863	936	302	35,768	

Table 3.3 Summary of Forest Bridges and Bridge Condition on FS land in the Sierra Nevada

National Forest	Adequate Bridges	Structurally Deficient Bridges	Total Bridges
ELDORADO	26	10	36
INYO	25	1	26
LASSEN	13	68	81
MODOC	14	0	14
PLUMAS	82	54	136
SEQUOIA	62	0	62
SIERRA	162	7	169
STANISLAUS	117	4	121
ТАНОЕ	31	0	31
LTBMU	7	1	8
TOTALS	539	145	684

Note

- 1. Numbers include major culverts (over 20 foot span) plus bridges.
- 2. The large number of structurally deficient bridges on some forests is likely due to coding differences in the INFRA database.

Asset Management + GIS

The Ongoing Best Engineering Practices (BMPs) (Stormproofing)

- Having Road Maintenance Current
- Improving Road Surface Drainage
- Having Adequate Cross-Drainage
- Culvert and Channel Cleaning
- Preventing Culvert Diversion
- Increasing Pipe Capacity
- Overflow Protection and Trash Racks
- Low-Water Fords vs Culvert Pipes

Adaptation/Mitigation Measures (Stormproofing)

- Bridge Channel Cleaning & Scour Protection
- Road-Stream Encroachment-Moving Roads
- Thorough Vegetative Cover (Deep roots)
- Using Soil Bioengineering/Biotechnical Measures
- Gully Control and Prevention
- Local Slope Stabilization Measures, Drainage Pulling Back Unstable Fills, Deep Patch, Soil Nailing
- Changing Road Grade or Alignment, Closure

Coordination Between Agencies & Locals

Maintenance

Surface Drainage

Typical Road Surface Drainage Options

